Interaction of atomic hydrogen with single-walled carbon nanotubes: a density functional theory study.

نویسندگان

  • Verónica Barone
  • Jochen Heyd
  • Gustavo E Scuseria
چکیده

We have studied the interaction of atomic hydrogen with (5,5) and (10,0) single-walled carbon nanotubes (SWNT) using density functional theory. These calculations use Gaussian orbitals and periodic boundary conditions. We compare results from the local spin density approximation, generalized gradient approximation (GGA), and hybrid density functionals. We have first kept the SWNT geometric structure fixed while a single H atom approaches the tube on top of a carbon atom. In that case, a weakly bound state with binding energies from -0.8 to -0.4 eV was found. Full geometry relaxation leads to a strong SWNT deformation, weakening the nearest C-C bonds and increasing the binding energy by about 1 eV. Full hydrogen coverage of the (5,5) SWNT converts this metallic nanotube into an insulator with a band gap of 3.4 eV for the GGA functional and 4.8 eV for the hybrid functional. Hybrid functionals perform similar to pure density functional theory functionals for the calculation of binding energies while band gaps critically depend on the functional choice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes

The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...

متن کامل

A Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes

The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...

متن کامل

Investigation of hydralazine drug adsorption on functionalized single-walled carbon nanotubes by density functional theory (DFT) method

Background: In recent years, advances in nanotechnology presents opportunities to overcome limitations in targeted drug delivery. Nano drug carriers have the ability to change the pharmacokinetics of drugs and can improve efficacy and reduce side effects. The objective of the present work is to study the interaction of Hydralazine with functionalized carbon nanotubes by performing density funct...

متن کامل

Investigation of Solvent Effects on Interaction of Single-Strand DNA with Open-End of Single Walled Carbon Nanotubes Using QM and MM methods

The interaction of biomolecules with carbon nanotubes (CNTs) has generated a great deal ofinterest in the past few years. The interaction between B-form single-strand DNA (ssDNA) andsingle-walled carbon nanotubes (SWCNTs) is a subject of intense current interest; however thereare a relatively small number of papers in the literature dealing with interaction of DNA andSWCNTs. In this work we inv...

متن کامل

A DFT study of interaction of folic acid drug on functionalized single-walled Carbon Nanotubes

In this work, the structural and electronic properties of folic acid molecule on functionalized (7,0)zigzag single-walled carbon nanotube was studied in gas phase on the basis of density functionaltheory (DFT). Furthermore, covalent interaction of folic acid with single-walled carbon nanotube wasinvestigated and its quantum molecular descriptors and binding energies were calculated. The DFTB3LY...

متن کامل

A First-Principles Study on Interaction between Carbon Nanotubes (10,10) and Gallates Derivatives as Vehicles for Drug Delivery

First principles calculations were carried out for investigation the novel 7-hydroxycoumarinyl gallates derivatives in gas and liquid phases using density functional theory (DFT) method. Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for gallates derivatives. All calculations were performed using DMol3 code which is based on DFT. The Doubl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 120 15  شماره 

صفحات  -

تاریخ انتشار 2004